Our services
We will find a way to get your product idea to the patient.
Together we develop a concept to create a product. We offer you to carry out the complete product development from the idea to serial production or we are happy to support you only in parts of the development that you can not completely cover in your company. BioCer unites the complete process chain reaching from material development to production from a single source.
Process chain
When developing a product, we always meet the requirements of medical devices. We implement all development processes in accordance with DIN EN ISO 13485. This includes an accompanying risk analysis and evaluation in accordance with DIN EN ISO 14971 as well as a test of usability (DIN EN 62366) for all steps.
Our core competencies in the field of material development are the material groups polysaccharides (powder, fleece, granulate), functional coatings (OsteoCer, TiOCer, SeptoCer) and biocompatible ceramics (bio glasses, sol-gel calcium phosphate composites).
We offer these services in the field of product development:
- Development of prototypes
- Manufacturing of the packaging
- Sterilization of the products
- Testing of usability
- UDI compliant labeling
- Cooperation with partner networks
BioCer holds approvals for class II and class III products in more than 60 countries worldwide. We will be happy to advise you with this experience. Our expert team supports you with the documentation and the necessary studies to obtain the CE lable for your product.
In addition to the development of the products, BioCer also supports you with upscaling and process development. We would be happy to fabricate the products for you as an extended workbench. BioCer GmbH manufactures products exclusively in clean room atmosphere in accordance with the current standards of medical devices. We prove this annually in system audits by our notified body (EN ISO 13485, MDSAP) and in international distributor audits.
Why BioCer?
Efficient development processes that meet the regulatory requirements of the respective markets and at the same time take into account the company’s economic issues can be an important competitive advantage. We work in small, interdisciplinary teams according to this objective thus enabling you a quick market launch.
During the process of engineering-to-order we always adhere to the strict regulatory requirements for medical devices. As we work in accordance to EN ISO 13485, we are able to develop a variety of different products with a high level of user safety.
The human element
“Interdisciplinarity is the key to answering questions about the future. For the world has become too complex to be explicable from just one point of view.” Azra Akšamija (MIT)
True to this motto, our interdisciplinary team formed by people from different disciplines and professions is available for your research or development project.
Our Development department covers a wide range of competence and necessary expertise for the implementation of your medical device. By our uncomplicated internal communication we guarantee the efficient processing of your development project. Our employees include chemists, biologists, biomaterial engineers, materials scientists and qualified laboratory technicians.
Cooperation
Be it just a vision, a research project or a specific product idea: As your partner we are capable of implementing your project together with you. We support as much as possible, but only as much as necessary. We offer the following services:
- Contract research (B2B)
- Third-party funded projects (SMEs)
- Development of own products
- Contract manufacturing (extended workbench)
Our Equipment
Our equipment fleet and laboratory equipment are geared towards our core competencies. We are equipped with the following devices:
- Laser cutter Lasermaxx PLOTT 125, Cameo company
- Universal testing machine (Zwick/Roell)
- Microscope Zeiss Stemi 508
- Digital dip coating machines (RDC10, RDC 21-K, KSVDX25 500)
- Intensive mixer Eirich EL01
- Various ceramic and sintering furnaces
- Freeze drying system Virtis Genesis 25 ES/P with digital process control
- Research laboratories with monitored room air (Testo Saveris)
In addition, the close cooperation with universities and research institutes enables us to obtain subcontracted access to almost all characterization options.
Literature
· A. Manz, T. Attin, B. Sener, P. Sahrmann
Dentin tubule obturation of a bioglass-based dentin desensitizer under repeated exposure to lactid acid and brushing
BMC Oral Health 2019 19 274
· A. Manz, T. Attin, B. Sener, P. Sahrmann
Performance of a bioglass-based dentine desensitizer under lactid acid exposition: an in-vitro study
BMC Oral Health 2018 18 193
· A. Mauerer, S. Stenglein, S. Schulz-Drost, C. Schörner, D. Taylor, S. Krinner, F. Heidenau, W. Adler, R. Forst
Antibacterial Effect of a 4x Cu-TiO₂ Coating Simulating Acute Periprosthetic Infection-An Animal Model
Molecules 2017, 22, 1042
· A. Mauerer, B. Lange, G. Hannes Welsch, F. Heidenau, W. Adler, R. Forst, R. Heiner Richter
Release of Cu2+ from a copper-filled TiO2 coating in a rabbit model for total knee arthroplasty
J Mater Sci: Mater Med. 25(3) (2014) 813-21
· D. Grunwald, A. Gerhardts, F. Heidenau, M. Beeh, J. Behringer, D. Höfer, A. Schmidt
Antimikrobielle Wirkung von keramischen Metallbeschichtungen
JOT 11 (2013) 62-64
· J. Cordes, F. Nguyen, F. Heidenau, D. Jocham
Could titanium oxide coating from a sol–gel process make stone baskets more resistant to laser radiation at 2.1 mum?
Journal of Negative Results in BioMedicine 11, 15 (2012).
· M. Haenle, A. Fritsche, C. Zietz, R. Bader, F. Heidenau, W. Mittelmeier, H.J. Gollwitzer, An extended spectrum bactericidal titanium dioxide (TiO2) coating for metallic implants: in vitro effectiveness against MRSA and mechanical properties
Mater Sci Mater Med. 22(2) (2011) 31-7
· D. Seitz, I. Wulcko, F. Heidenau, S. Hamisch, G. Ziegler
Measurement of physiology and growth of cells in 3D multilayered osteochondral constructs under mechanical stimulation.
Tissue Engineering Part A 15, 3 (2009) 675-737.
· Andreas Fritsche, Frank Heidenau, Hans-Georg Neumann, Wolfram Mittelmeier and Rainer Bader
Mechanical Properties of Anti-Infectious, Bio-Active and Wear Resistant Ceramic Implant Surface Coatings
Key Engineering Materials 396-398 (2009) 357-360.
· R. Tsaryk, K. Peters, R. Unger, M. Feldmann, B. Hoffmann, F. Heidenau, G. Ziegler, C.J. Kirkpatrick
TiO2-coating increases endothelial cell compatibility of Co28Cr6Mo alloy
BIOmaterialien 9, 3/4 (2008) 175.
· B. Hoffmann, F. Heidenau, R. Detsch, G. Ziegler
Cell Reponce to Ti6Al4V mofified with TiO2 and RGDS Peptides on Different Surface Roughness
In: J. Breme, J. C. Kirkpatrick, R. Thull: Metallic Biomaterial Interfaces, Wiley, Weinheim, 2007, 237-238.
· M. Haenle, F. Heidenau, R. Bader, W. Mittelmeier, H. Gollwitzer
Eine biokompatible und antibakterielle Titanoxidbeschichtung für medizinische Implantate mit Wirksamkeit gegen antibiotikaresistente Bakterien
BIOmaterialien 8, 2 (2007) 88.
· S. Winter, D. Velten, F. Aubertin, B. Hoffmann, F. Heidenau, G. Ziegler
Sol-Gel coatings, Interface Influence of Materials and Surface Modifications
In: J. Breme, J. C. Kirkpatrick, R. Thull: Metallic Biomaterial Interfaces, Wiley, Weinheim, 2007, 51-64.
· B. Hoffmann, F. Heidenau, S. Scheler, R. Detsch, G. Ziegler
The combined Effect of Surface Roughness and RGDS-functionalisation of TiO2-films on MC3T3-E1 osteoblast like cells
BIOmaterialien 7, 3 (2006).
· F. Heidenau, H. Gollwitzer, F. Stenzel, G. Ziegler, W. Mittelmeier
Antiinfektiöse, biokompatible Titanoxid-Beschichtung für Implantate sowie Verfahren zu deren Herstellung
Patent (DE10243132) (2006).
· F. Heidenau, S. Scheler, R. Detsch, G. Ziegler
Micro Structuring of Implant Surfaces by Particle Filled Sol-Gel Coatings and Cell Reaction in vitro
BIOmaterialien 7, S1 (2006) 72.
· F. Heidenau, S. Scheler, R. Detsch, G. Ziegler
Calcium-ion Release from Hydroxyapatite Filled Sol-Gel Coatings and Corresponding Cell Reaction in vitro
BIOmaterialien 7, 3 (2006) 159.
· K. Peters, B. Hoffmann, R. Detsch, F. Heidenau, G. Ziegler, R. Tsaryk, R.E. Unger, C.J. Kirkpatrick
Studies on Endothelial Gene Expression in vitro by Contact with Metallic Implant Materials and their Surface Modification by TiO2-Coating
BIOmaterialien 7, 3 (2006) 198.
· F. Heidenau, G. Ziegler
Multi-Functional meets Multi-Resistant: Antibacterial, biocompatible Implant-Coatings
Medical Technology in Bavaria (2005) 68-69.
· F. Heidenau, W. Mittelmeier, R. Detsch, M. Haenle, F. Stenzel, G. Ziegler, H. Gollwitzer
A novel antibacterial titania coating: Metal ion toxicity and in vitro surface colonization
J. Mater. Sci.: Mater. Med. 16 (2005) 883-888.
· F. Heidenau, M. Feldmann, F. Stenzel, G. Ziegler
Improvement of Load-Bearing Metallic Implants by Novel Coatings
In Proc: 7th World Biomaterials Congress, 17.-21. Mai 2004, Sydney (2004).
· H. Gollwitzer, F. Heidenau, F. Stenzel, M. Haenle, G. Ziegler, W. Mittelmeier
A biocompatible sol-gel derived titania coating for medical implants with antibacterial properties
In Proc: 7th World Biomaterials Congress, 17.-21. Mai 2004, Sydney (2004).
· H. Gollwitzer, F. Heidenau, M. Haenle, G. Ziegler, W. Mittelmeier
Eine biokompatible Titanoxidbeschichtung mit breiter antibakterieller Wirksamkeit zur Prophylaxe implantatassoziierter Infektionen
In Proc: Implantate als Arzneistoffträger, München (2004).
· F. Heidenau, H. Gollwitzer, F. Stenzel, W. Mittelmeier, G. Ziegler
Antiinfektiöse Ausrüstung einer biokompatiblen Titanoxidbeschichtung für metallische Implantatmaterialien
BIOmaterialien 3, 4 (2003) 22.
· F. Heidenau, H. Gollwitzer, F. Stenzel, W. Mittelmeier, G. Ziegler
A Sol-Gel Derived Biocompatible Titania Coating with Antibacterial Properties
In Proc: 18th European Conference on Biomaterials, Stuttgart (2003).
· F. Stenzel, F. Heidenau, R. Detsch, J. Schmidgall, B. Hoffmann, G. Lipps, G. Ziegler
Metallic Implants Modified with Titanium Oxide Coatings and Biomolecules, 2
In Proc: International Symposium: Interface Biology of Implants, Rostock (2003) 154.
· H. Gollwitzer, F. Heidenau, F. Stenzel, G. Ziegler, M. Haenle, W. Mittelmeier
Titania Coating as a Local ‘Drug’ Delivery System with Antibacterial and Biocompatible Properties, 2
In Proc: International Symposium: Interface Biology of Implants, Rostock (2003) 108.
· F. Stenzel, F. Heidenau, V. Faust, G. Ziegler
Verbundsysteme auf Titanoxidbasis für die Anwendung in der Medizintechnik
BIOmaterialien 3, 2 (2002) 110.
· H. Gollwitzer, F. Heidenau, F. Stenzel, G. Ziegler, W. Mittelmeier
A biocompatible and antiseptic sol-gel derived titania coating for medical implants
Langenbeck’s Arch. Surg. 387, 5-6 (2002) 257-258.
· V. Faust, F. Heidenau, J. Schmidgall, F. Stenzel, G. Lipps, G. Ziegler
Biofunctionalised Biocompatible Titania Coatings for Implants
In Proc: ECerS 7, Brügge (2002).
· F. Heidenau, F. Stenzel, G. Ziegler
Structured Porous Titania as a Coating for Implant Materials
Key Eng. Mater. 192-195 (2001) 87-90.
· F. Heidenau, F. Stenzel, H. Schmidt, G. Ziegler
Verbundwerkstoffe auf Titan-Basis mit offenporigen bioaktiven Oberflächenschichten
BIOmaterialien 2, 1 (2001) 19-24.
· F. Heidenau, F. Stenzel, V. Faust, G. Ziegler
Sol-Gel-abgeleitete Titanoxid-Beschichtungen von Titan/-legierungen zur Verbesserung der Biokompatibilität
In: Wielage, B., Leonhardt, G.: Verbundwerkstoffe und Werkstoffverbunde, Wiley-VCH, Weinheim, 2001, 413-417.
· F. Heidenau, F. Stenzel, G. Ziegler
Sol-Gel Derived Titania Coatings for Biomedical Applications
In: IOM Communications Ltd: British Ceramic Proceedings, IOM Communications Ltd., London, 1999, 523-524.
· F. Heidenau, H. Schmidt, F. Stenzel, G. Ziegler
Sol-Gel-Derived Titania with Gradient Porosity
In Proc: Bioceramics 13, Bologna (1999).
· F. Heidenau, H. Schmidt, F. Stenzel, G. Ziegler
Herstellung von Titandioxidschichten mit variablen Porengrößen über Sol-Gel-Synthesen
In: H. Dimigen, W. Paatsch: Werkstoffwoche 98, Band IX, Symp. 11 Oberflächentechnik, Wiley-VCH Verlag GmbH, Weinheim, 1999, 223-226.
· F. Heidenau, H. Schmidt, F. Stenzel, G. Ziegler
Sol-Gel-Derived Titania with Gradient Porosity
In: Niihara K., Sekino T., Yasuda E., Sasa T.: Proc. EnCera ‘98, Osaka, Japan, 1999, 115-116.
· H. Schmidt, F. Heidenau, G. Ziegler
Sol-Gel Derived and Supercritical Dried Oxide Ceramics
Adv. Sci. Technol. 15 (1999) 143-150.
- (EP16171003) PORÖSER FESTKÖRPER MIT BIMODALER PORENGRÖSSENVERTEILUNG SOWIE VERFAHREN ZU DESSEN HERSTELLUNG
- (EP07820006) STRUKTURIERTE BESCHICHTUNGEN FÜR IMPLANTATE SOWIE VERFAHREN ZU DEREN HERSTELLUNG
- (EP03770943) ANTIINFEKTIÖSE, BIOKOMPATIBLE TITANOXID-BESCHICHTUNGEN FÜR IMPLANTATE SOWIE VERFAHREN ZU DEREN HERSTELLUNG